חAmIBIA UחIVERSITY
OF SCIEПCE AПD TECHПOLOGY
FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE HONOURS	
QUALIFICATION CODE: 08BOSH	LEVEL: 8
COURSE CODE: BBC811S	COURSE NAME: BIOINORGANIC AND BIOPHYSICAL CHEMISTRY
SESSION: JULY 2022	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	DR. EUODIA HESS
MODERATOR:	DR. LIKIUS DANIEL

| INSTRUCTIONS |
| :--- | :--- |
| 1. Answer ALL the questions. |
| 2. Write clearly and neatly. |
| 3. Number the answers clearly |
| 4. All written work must be done in blue or black ink and sketches can |
| be done in pencil |
| 5. No books, notes and other additional aids are allowed |

THIS QUESTION PAPER CONSISTS OF 4 PAGES (Including this front page, list of useful constants and Periodic Table)

QUESTION 1:

What are the biological roles/functions of the following metals:
a) Co
b) Cu
c) Na
d) Ca
e) K

QUESTION 2:

What are the donor atoms according to the hard soft acid base (HSAB) theory? Explain with examples if they hard, soft or intermediate.

QUESTION 3:

3.1 In medicine the use of metal ions and their associated complexes is widespread. Among Metal ions commonly used over the centuries were Hg^{2+} for treatment of syphilis, Mg^{2+} for intestinal disorders and Fe^{2+} for anaemia. Today one of the leading anticancer drug is cis-[$\left.\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$, cisplatin, which was first approved for use in 1978.
i) Against which type(s) of cancer is cisplatin effective?
ii) Draw the structure of cisplatin.
iii) How does cisplatin function as a anticancer drug?
iv) What are the disadvantages of using cisplatin as an anticancer drug?
3.2 Name three other platinum drugs that are utilized as an anticancer drug and for each drug answer question \mathbf{i} - iv for them as well.

SECTION B:

QUESTION 1:

The kinetics of CO_{2} hydration catalysed by the enzyme carbonic anhydrase is as follows:

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HCO}_{3}^{-}+\mathrm{H}^{+}
$$

The following initial reaction rates for the hydration reaction were obtained for an initial enzyme concentration of 2.3 nM and temperature of $0.5^{\circ} \mathrm{C}$:

Rate $\left(\mathrm{M} \mathrm{s}^{-1}\right)$	$\left[\mathrm{CO}_{2}\right](\mathrm{mM})$
2.78×10^{-5}	1.25
5.00×10^{-5}	2.5
8.33×10^{-5}	5.0
1.67×10^{-4}	20.0

QUESTION 2:

2.1 Obtain a balanced chemical equation and calculate the standard electrochemical potential for reduction of Fe^{3+} to Fe by Zn metal $\left(\mathrm{Zn}^{2+} \rightarrow \mathrm{ZnE} \mathrm{E}^{0}=-0.7618 \mathrm{~V} ; \mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}^{0}=-0.037 \mathrm{~V}\right)$.

Page $\mathbf{2}$ of $\mathbf{4}$
2.2 The enzyme glutathione reductase replenishes the cell's supply of GSH regenerating two molecules of GSH from single molecule of oxidized gluthione (GSSH), using NADPH as a source of two reducing equivalents. A typical cellular $\mathrm{NADP}^{+} / \mathrm{NADPH}$ ratio is 0.005 , calculate the equilibrium cellular concentration of GSSG at pH 7 and $25^{\circ} \mathrm{C}$, if GSH concentration is 4 mM . (GSSG $+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{GSH}^{0}=-0.240 \mathrm{~V} ; \mathrm{NADP}^{+}+\mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow$ NADPH $\mathrm{E}^{0}=-0.339 \mathrm{~V}$).

QUESTION 3:

For the hydrolysis of ATP, standard conditions do not prevail in the cellular environment. In the Cell, typical concentrations of ATP, ADP and inorganic phosphate are $c_{\text {ATP }}=1850 \mu \mathrm{M}, c_{\text {ADP }}=$ $138 \mu \mathrm{M}$, and $c_{\mathrm{pi}}=1.00 \mathrm{mM}$. Calculate the Gibbs energy of hydrolysis in the cellular environment, assuming $\mathrm{pH}=7$ and $\mathrm{T}=310 \mathrm{~K}$.

QUESTION 4:

The enthalpy of melting ice at 1 bar is $6.007 \mathrm{~kJ} / \mathrm{mol}$; the density of water at $0^{\circ} \mathrm{C}$ is $999.9 \mathrm{~kg} \mathrm{~m}^{-3}$, While that of ice is $915.0 \mathrm{~kg} \mathrm{~m}^{-3}$. Assuming $\Delta \mathrm{V}_{\mathrm{m}}$ fusion and $\Delta \mathrm{H}_{\mathrm{m}}{ }^{\text {fusion }}$ are constant, determine the freezing point of water at 100 bar.

END OF EXAMINATION

USEFUL CONSTANTS:

Gas constant, $\mathrm{R}=8.3145 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=0.083145 \mathrm{dm}^{3} \cdot \mathrm{bar}^{2} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}=0.08206 \mathrm{~L}$ atm $\mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$
$1 \mathrm{~Pa} \cdot \mathrm{~m}^{3}=1 \mathrm{kPa} \cdot \mathrm{L}=1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J}$

1 atm $=101325 \mathrm{~Pa}=760 \mathrm{mmHg}=760$ torr
Faradays constant $=96,485 \mathrm{C} / \mathrm{mol}$
Avogadro's Number, $N_{A}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$

Planck's constant, $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$

Speed of light, $\mathrm{c}=2.998 \times 10^{8} \mathrm{~ms}^{-1}$
PERIODIC TABLE OF THE ELEMENTS

	울	$\infty \text { 夜㐌 }$	凩	岛灾	－\％ $0^{\text {a }}$	$\stackrel{\infty}{\square}$
\wedge		ニ已筞		$\mathfrak{n - 0}$	\cdots＜	
\because	$\infty \quad \begin{array}{lll} \hline & \stackrel{\rightharpoonup}{6} \\ \end{array}$	－¢ ${ }_{\text {coid }}^{0}$	¢	～	交	$\frac{1}{2}$
\cdots	$-z \begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	$\because \sim \overbrace{0}^{\infty}$		动会犀	$\begin{array}{\|cc\|c} \infty \\ \infty & -a_{0}^{\circ} \\ 0 & a_{0}^{\prime} \end{array}$	
\pm	$\bigcirc \cup$	U污芲	～～®	的 $\square_{0}^{\circ}{ }_{0}^{\circ}$		$\pm{ }^{ \pm}$
\cdots	in $ص \stackrel{\stackrel{\circ}{\circ}}{\text { ¢ }}$	$\cdots<\underbrace{\substack{0}}_{\substack{0 \\ 0}}$	－尔 ${ }_{0}$			
		\simeq	웃츙ํ			끌 言
		$=$	示 $\begin{gathered}\text { \％} \\ 0\end{gathered}$		$\therefore \text { 르́영 }$	三3
		\bigcirc	－	¢－\％	－A ${ }_{\text {a }}^{\circ}$	옹형
		9	N O_{0}^{\sim}	\％苗竒	ニム島	응 空包
		∞	¢ \sim_{\sim}°	寸 言京	$\bigcirc 0^{\circ} 0^{\circ}$	운
		\checkmark	$N \sum_{i}^{\circ}$	\％¢ ¢	\cdots ¢	으수쑹
		\checkmark	式 U			웅
		\sim	N $>$ 䓂	- 吕高	$\approx \underset{\sim}{\circ}$	응 웅
		$+$		O 눙		y un
		m		N二小心		
\sim	ナ ©	$\approx \sum_{i=100}^{00}$	Ci U Ợ	∞	오 ตn	
-玉产	$m \text { ज }$	二艺运	$\therefore \underset{y}{\circ}$	$\begin{array}{\|cc\|c} \infty & 0 \\ \hline \end{array}$	$\text { in } \begin{array}{ll} n & \vdots \\ 0 \\ \hline \end{array}$	$\infty \text { 出気 }$

Lanthanides：	57 La 138.906	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.12 \end{gathered}$	59 Pr 140.908	$\begin{array}{\|c\|} \hline 60 \\ \text { Nd } \\ 144.24 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 61 \\ \mathbf{P m} \\ (145) \end{array}$	$\begin{gathered} 62 \\ \mathbf{S m} \\ 150.36 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 63 \\ \text { Eu } \\ 151.96 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 64 \\ \text { Gd } \\ 157.25 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 65 \\ \mathbf{T b} \\ 158.925 \end{array}$	$\begin{array}{\|c} \hline 66 \\ \mathbf{D y} \\ 162.50 \end{array}$	$\begin{gathered} \mathbf{6 7} \\ \mathbf{H 0} \\ 161.930 \end{gathered}$	$\begin{gathered} 68 \\ \mathbf{E r} \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \mathbf{T m} \\ 166.934 \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$
Actinides：	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	227.028	232.038	231.036	238.02	237.048	（244）	（243）	（247）	（247）	（251）	（252）	（257）	（258	（259）

